Tensorflow 練習1 : Polynomial Regression

使用 Tensorflow 分析 Regression 的基礎練習

Nerual network 分析二維四次多項式

先定義輸入輸出格式,None表示我們不限制它的Row

TF_PR1

 

在 Tensorflow 中 要定義它是常數、變數,或是從外部輸入,必須要分別指定成
tf.constant() tf.Variable() tf.placeholder(),他才會是那個形式;
而想使用Tensorflow 的任何內容,必須要用sess.run()去啟動它,不然會是Tensor的格式。
其中sess = tf.Session()

定義一個Y = W*x +b 的線性方程,在隱藏層中利用activation function 去改變它。

TF_PR2

 

評估模型好壞常用有square error和cross_entropy,這裡利用square error計算loss。

選擇基本的梯度下降並最小化loss;optimizer是個小於1的值。

設定要訓練的數值和函數(記得要有一定的雜訊)

TF_PR3

W shape = (in_dim, hidden_units) = (10,1)

predictions shape = (200,1)*(1,10)*(10,1) = (200,1)

訓練1000次每50次看結果:視覺化和數據化

TF_PR4

 

placeholder 給資料會是一個字典的形式 Session.run(*****,feed_dict={a:a_data,b:b_data,.....})

最後結果

TF_PR7

 

My GitHub



發表留言